Cosmic-ray mass composition with LOFAR

Stijn Buitink for the LOFAR Cosmic Ray KSP

A. Corstanje, J.E. Enriquez, H. Falcke, W. Frieswijk, J.R. Hörandel, M. Krause, A.Nelles, S. Thoudam, J.P. Rachen, P.Schellart, O.Scholten, S. ter Veen.

The all-particle cosmic ray spectrum

What Cosmic-Ray Masses tell us...

Galactic/extragalactic transition models

Accurate mass measurements needed! LOFAR: mass composition at 10¹⁷ - 10¹⁸ eV

Understanding the radio pattern

vector sum of geomagnetic and charge excess component relativistic beaming distortion by Cherenkov-like effects ($n \neq I$)

CoREAS simulation

- Full sample: 50 showers
- 200 450 antennas/event
- Fit qualities range from 0.9 2.6
- Radiation mechanism finally completely understood!

Xmax reconstruction

protons penetrate deeper than iron nuclei

- For each measured shower: Simulate many proton and iron showers
- Fit each simulation to the data free parameters: core position energy re-scaling
- Reconstruct depth of shower maximum: Xmax
- Correction for atmospheric variations
- Uncertainty < 20 g/cm² !!

Mean Xmax for 50 showers

... we can do better than that!

- LOFAR: high precision per event!
- Use full distribution of Xmax not only mean value
- First calculate mass parameter a

$$a = \frac{\langle X_{\text{proton}} \rangle - X_{\text{shower}}}{\langle X_{\text{proton}} \rangle - \langle X_{\text{iron}} \rangle}$$

 Fit model distribution to measured distribution

Cumulative distribution: model fits

We can already separate 2 mass components with only 50 showers!

Conclusions

- LOFAR is first radio telescope that can accurately measure CR mass composition
- Radio emission mechanism finally understood
- Xmax accuracy of < 20 g/cm² similar to fluorescence detection + higher duty cycle
- First 50 events: strong proton fraction below 10¹⁸ eV
- Result favours early transition to extragalactic component also constrains models of (extra-)galactic IceCube neutrinos
- Future:
 - energy dependent mass ratios for 4 mass components
 - more precise reconstruction techniques

